
Abstract  The Surface Water and Ocean Topography (SWOT) mission will vastly expand measurements 
of global rivers, providing critical new data sets for both gaged and ungaged basins. SWOT discharge products 
(available approximately 1 year after launch) will provide discharge for all river that reaches wider than 
100 m. In this paper, we describe how SWOT discharge produced and archived by the US and French space 
agencies will be computed from measurements of river water surface elevation, width, and slope and ancillary 
data, along with expected discharge accuracy. We present for the first time a complete estimate of the SWOT 
discharge uncertainty budget, with separate terms for random (standard error) and systematic (bias) uncertainty 
components in river discharge time series. We expect that discharge uncertainty will be less than 30% for 
two-thirds of global reaches and will be dominated by bias. Separate river discharge estimates will combine 
both SWOT and in situ data; these “gage-constrained” discharge estimates can be expected to have lower 
systematic uncertainty. Temporal variations in river discharge time series will be dominated by random error 
and are expected to be estimated within 15% for nearly all reaches, allowing accurate inference of event flow 
dynamics globally, including in ungaged basins. We believe this level of accuracy lays the groundwork for 
SWOT to enable breakthroughs in global hydrologic science.

Plain Language Summary  The Surface Water and Ocean Topography (SWOT) satellite mission 
was launched on 15 December 2022. SWOT is designed to produce estimates of river discharge on many rivers 
where no in situ discharge measurements are currently available. This paper describes how SWOT discharge 
estimates will be created, and their expected accuracy. SWOT discharge will be estimated using simple flow 
laws that combine SWOT measurements of river water elevation above sea level, river width, and river slope, 
with ancillary data such as river bathymetry. We expect that discharge uncertainty will be less than 30% for 
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Key Points:
•	 �The Surface Water and Ocean 

Topography satellite mission is 
designed to enable the estimation of 
discharge for global rivers wider than 
100 m

•	 �When unconstrained by in situ data, 
discharge uncertainty is expected to 
be <30% for most reaches, and to be 
dominated by systematic bias

•	 �We expect discharge temporal 
variations to be estimated to within 
15% for nearly all reaches globally
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1.  Introduction
Launched on 15 December 2022, the Surface Water and Ocean Topography (SWOT) satellite enables esti-
mates of global river discharge, vastly increasing the observational basis for understanding global hydrolog-
ical processes (Biancamaria et  al.,  2016). Measurements of river discharge integrate upstream water cycle 
processes, and thus are among our most important data resources for understanding hydrology from the water-
shed to continental scales. However, most of the world's rivers are functionally ungaged due to a range of 
factors including lack of resources and lack of data sharing (Gleason & Hamdan, 2017; Hannah et al., 2011). 
Remote sensing of river discharge provides the possibility of global observation even in ungaged basins, but 
with important tradeoffs, including decreased measurement accuracy, precision, and sampling frequency as 
compared with observing discharge in situ (Gleason & Durand,  2020). SWOT is a collaboration between 
the space agencies of the United States, France, United Kingdom, and Canada, and will measure oceans and 
surface water. SWOT measurements of river water surface elevation (WSE), top width and longitudinal water 
surface slope (JPL Internal Document, 2020) enable SWOT discharge estimates, allowing potential global 
scale advances in hydrology. A benchmarking study recently focused on one aspect of expected performance 
of algorithms used to estimate SWOT discharge in ungaged basins (Frasson et  al.,  2021). However, a full 
exploration of SWOT discharge philosophy, methodology, and expected uncertainty has not been presented 
in the literature.

The purpose of this paper is to document SWOT discharge creation, space-time coverage, and expected precision 
and accuracy for the hydrologic community. We first note that SWOT discharge is not monolithic—open satellite 
data will allow for many “SWOT Discharge” products created by hydrologists across the scientific community. 
This paper is therefore primarily concerned with the SWOT discharge to be archived and distributed by the US 
and French space agencies (referred to as the “Agency” discharge estimates). We first describe the philosophy 
behind the SWOT discharge (Section 2), and data sets used to produce SWOT discharge (Section 3), including 
SWOT observations and ancillary measurements. We then describe how SWOT discharge will be produced 
(Section 4) and expected accuracy (Section 5), relating expected SWOT discharge accuracy with that achievable 
from in situ measurements. Our aim is to describe SWOT discharge characteristics before their availability, thus 
maximizing hydrologic science returns from SWOT.

2.  SWOT Discharge Philosophy
To understand the SWOT discharge products, it is helpful to begin with an appreciation of the challenges that 
must be overcome to estimate river discharge globally. These challenges have led to data product decisions that 
together constitute a philosophy for SWOT discharge. Whereas previous papers on SWOT discharge and related 
efforts have predominantly described methodological advances, here we bring together these challenges and the 
resulting philosophy in a single place.

Discharge is a critical part of the SWOT mission, but not all the information needed to compute discharge is 
directly available from the SWOT measurements. Discharge is specified as a required product to be produced 
and distributed by the space agencies in the SWOT science requirements document, the foundational mission 
document that specifies what SWOT products must be produced and with what accuracy (JPL Internal Docu-
ment, 2018). SWOT measurements of rivers include WSE, river width, and slope, each of which is invaluable 
in estimating river discharge (for further information on SWOT measurements; see Section 3.2). However, these 
measurements together do not have a unique relationship to river discharge. Thus, the SWOT Science Team will 
develop and deploy methods to estimate the additional properties of global rivers needed to produce the Agency 
discharge estimate. (Note that SWOT, like many large satellite missions, has a “Science Team” comprised of 
researchers from around the globe to support the mission.) The Science Team will likely create and distribute 
additional discharge data products: see Section 4.7 for details. The Agency discharge estimates are thus a partner-
ship between the Agencies and the Science Team.

two-thirds of global reaches and will be dominated by a systematic bias. Temporal variations in river discharge 
time series are expected to be estimated within 15% for nearly all reaches, thus capturing the response of river 
discharge to rainfall and snowmelt events, including in basins that are currently ungaged, and providing a new 
capability for scientists to better track the flows of freshwater water through the Earth system.
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The philosophy and corresponding methods used to produce SWOT discharge are shaped by the nature of the 
SWOT measurements, and the need to apply SWOT to estimate discharge in ungaged basins. SWOT discharge 
methods thus differ from the well-known two-step process to estimate river discharge at in situ gages (Turnipseed 
& Sauer, 2010). In this traditional approach, gage discharge is estimated by first establishing a “rating curve” 
by making joint measurements of river stage (height above an arbitrary datum) and river discharge; the latter is 
obtained by measuring the river velocity profile at a river cross-section with either a current meter or an Acous-
tic Doppler Current Profiler (ADCP). Second, once the rating curve is established, discharge is predicted from 
the rating curve via continuous observations of river stage, typically measured by a pressure transducer. SWOT 
discharge will also be estimated by a two-step process that is an analog to gages: In the first step, we establish a 
relationship between SWOT observations and river discharge, and in the second step, SWOT observations are 
used along with the relationship to estimate discharge on each SWOT overpass. However, the methodological 
details for the first step differ significantly from the rating curve calibration approach due to the lack of in situ 
discharge data for most of the world. As noted earlier, this article focuses on the SWOT discharge produced by 
the space agencies (JPL Internal Document, 2020), which follows this two-step methodology; see Section 4.7 for 
other approaches to SWOT discharge. The philosophy governing Agency discharge products can be summarized 
in five points (Figure 1); note that these are five philosophical points, rather than five sequential steps in discharge 
estimation.

First, river discharge estimates will be driven by “primary data,” defined by Gleason and Durand  (2020) as 
“electromagnetic radiation recorded directly by the satellite.” Thus, the basic form of flow laws used to compute 
discharge (𝐴𝐴 𝐴𝐴𝑡𝑡 ) for each reach and for each SWOT overpass at a time 𝐴𝐴 𝐴𝐴  must rely on SWOT observations, and 
will in most cases be a modified form of the Gauckler-Manning-Strickler equation (referred to as the “modified 
Manning's equation,” hereafter):

𝑄𝑄𝑡𝑡 =
1

𝑛𝑛𝑡𝑡

(

𝐴̄𝐴 + 𝐴𝐴′
𝑡𝑡

)5∕3
𝑊𝑊

−2∕3

𝑡𝑡
𝑆𝑆

1∕2

𝑡𝑡
,� (1)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is the coefficient governing hydraulic resistance in the river, 𝐴𝐴 𝐴̄𝐴 is the time-series median cross-sectional 
area (note that 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴̄𝐴 are computed as described below), 𝐴𝐴 𝐴𝐴′

𝑡𝑡
 is the cross-sectional area anomaly (i.e., the 

time-varying part), such that 𝐴𝐴 𝐴̄𝐴 + 𝐴𝐴′
𝑡𝑡
 estimates the total cross-sectional area at time 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡 are SWOT obser-

vations of reach averaged river width and surface slope, respectively, and the 𝐴𝐴 𝐴𝐴  subscript denotes values that vary 

Figure 1.  The five points numbered in the figure correspond to the five points governing Agency discharge products. The 
blue and red lines in the cartoon illustrate two conceptual river reaches. The hydrographs on the right-hand side of the 
figure are derived from simulated Surface Water and Ocean Topography (SWOT) observations (Frasson et al., 2017) on the 
Sacramento River. “Consensus” discharge estimates (see text for description) are not shown.
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from pass to pass (note that all quantities vary spatially). See Appendix A for 
details of the derivation of Equation 1 and see Section 3.2 for SWOT obser-
vation precision and spatial and temporal sampling characteristics. We assert 
that 𝐴𝐴 𝐴𝐴′

𝑡𝑡
 is measured by SWOT, as it is computed in a straightforward way 

from SWOT WSE and river width observations (see Appendix A). Values of 
𝐴𝐴 𝐴𝐴𝑡𝑡 are computed from simple functions of SWOT observations as described 

in Section 4.2. All quantities in Equation 1 are reach averages. Equation 1 
is derived from the shallow water equations under simplifying assumptions 
as described in Section 4.2. Discharge computations from these simple flow 
laws enable straightforward uncertainty quantification (see Section  5) and 
meet the practical requirement that global discharge computation proceed 
with little or no supervision by the space agencies. As discharge is predicted 
from these flow laws, SWOT does not “measure” discharge but rather “esti-
mates” it. SWOT discharge estimates are thus driven by primary data in that 
time variations in discharge are driven only by time variations in the remote 
sensing observations of WSE, width, and slope.

Second, as described earlier in this section, discharge will be computed using 
a two-step process: members of the SWOT Science Team will compute 
optimal estimates of flow law parameters, then provide these to the space 
agencies for regular computation of SWOT discharge using the chosen flow 
laws (Figure 2). This two-step process is necessary because SWOT cannot 
measure all flow law terms, such as the coefficient governing hydraulic 
resistance and the river bathymetry (represented by 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴̄𝐴 respectively, 
in Equation 1). These unobserved terms in the flow laws are referred to as 
“flow law parameters” (FLPs) hereafter. FLP estimates will be computed by 
the Science Team after SWOT data is available using algorithms described 
in Section 4.3. After FLPs are estimated, SWOT discharge will be produced 
automatically for each SWOT pass. These two steps are referred to as “flow 
law parameter estimation” (FLPE) and “discharge production.”

Third, SWOT discharge will be produced reaching approximately 10 km in 
length. The selection of 10 km as the reach length was driven by precision 
of reach averaged WSE, width, and slope measurements. SWOT WSE meas-
urements will be noisy at the scale of individual radar pixels (JPL Internal 
Document, 2017). Rodriguez et al. (2020) showed that averaging to reaches 
of approximately 10  km is necessary to resolve river features. Thus, the 
Agency discharge products will be produced at reach scale; reach averaging 
necessitates adaptation of flow laws, as shown by Rodriguez et al.  (2020), 

and discussed in Section 4.2. We control for changes in discharge within the reach by choosing reaches to avoid 
major confluences: see Section 3.1. Reach definition takes into account low-head dams and other river obstruc-
tions (X. Yang et al., 2022). Possible Science Team discharge estimates at higher spatial resolution are discussed 
in Section 4.7.

Fourth, two branches of SWOT discharge will be produced: one where in situ data are used to constrain SWOT 
discharge, and one where in situ data are not used to constrain discharge, referred to as “gage constrained” and 
“unconstrained,” respectively. Philosophically, these two branches are driven by the fact that SWOT discharge 
estimates will be used in both gaged and ungaged basins, with different sets of expectations and requirements 
regarding discharge accuracy. For example, most remotely sensed precipitation estimates are constrained to 
precipitation gages, where these are available (Hou et al., 2014), providing precedent for constraining SWOT 
remote sensing of discharge to stream gage data. The constrained branch will leverage both historical and concur-
rent gaged discharge data. A priori information (e.g., mean annual flow predicted by global hydrological models) 
will still be used to “inform” the unconstrained products. This is in accordance with our philosophy because 
methods to estimate “unconstrained” FLPs use model data only as a priori information in the Bayesian sense, 
and, the models used (e.g., the Water Balance Model [WBM] described by Cohen et al. (2014)) are not them-
selves calibrated on in situ discharge data. Parameter estimates are Bayesian in that they weight prior estimates 

Figure 2.  Summary of the two steps of Surface Water and Ocean Topography 
(SWOT) discharge production. In step 1 (denoted by the dashed line box in 
the figure), flow law parameters (FLPs) are estimated by the Science Team. 
In step 2 (denoted by the solid line box) discharge is produced using the 
estimated flow law parameters, and SWOT observations. FLPE is flow law 
parameter estimation.
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of mean annual flow or river geomorphology against information derived from inverse algorithms, based on their 
respective uncertainties (Hagemann et al., 2017). In contrast, the “gage constrained” FLPs will be chosen assum-
ing the availability of suitable in situ discharge data and informed by global models calibrated at specific gage 
sites. Gage discharge will be used only during the calculation of the FLPs, not during the operational discharge 
calculation by space agencies. Additionally, some discharge gages will be reserved for validation purposes (i.e., 
not used to constrain either prior models or SWOT discharge) to assess discharge accuracy and precision of both 
the gage-constrained and unconstrained products (see Section 4.5, below).

Fifth, Agency products will include an ensemble of discharge estimates, produced using several different flow 
laws and FLPE algorithms described in Section 4.3. A “consensus” discharge estimate based on a summary 
statistic computed across the ensemble will also be included (see Section 4.4). This ensemble approach is driven 
by the fact that FLPE in ungaged basins is challenging, and it is unlikely that a single approach is optimal for all 
rivers. The ensemble approach adds robustness to SWOT discharge.

3.  Data and Data Sets Used for SWOT Discharge Estimation
In this section, we describe the SWOT mission river database (SWORD; Section  3.1), SWOT observations 
(Section 3.2), and ancillary data (Section 3.3) used for FLPE and discharge production.

3.1.  SWOT Mission River Database

SWORD archives both spatial data and reaches attributes for SWOT reaches (Altenau et al., 2021) and is criti-
cal to the creation of SWOT river data products. The primary spatial attributes of SWOT reaches are SWORD 
river centerlines, which are specified based on the Global River Widths from the Landsat data set (Allen & 
Pavelsky,  2018) at ∼30  m spatial resolution, using Landsat data and the RivWidth algorithm (Pavelsky & 
Smith, 2008). SWORD also defines spatial data and attributes for river nodes, a series of points at approximately 
200 m increments along river longitudinal profiles defined by the SWORD centerline. SWORD reaches and 
nodes are used in several stages of SWOT processing: for example, SWOT radar pixels are mapped onto SWORD 
node locations using the RiverObs software (https://github.com/SWOTAlgorithms/RiverObs), translating 
two-dimensional imagery to one-dimensional measurements of WSE, width, and slope. SWORD archives river 
ice climatology (derived following the methods of X. Yang et al. (2020)) used for SWOT ice flagging. SWORD 
distance from river outlet (also called “chainage”) and SWOT WSE at the node scale are combined to compute 
SWOT reach averaged river slope. SWORD also archives drainage area, extracted from data sets such as MERIT 
Hydro (Yamazaki et al., 2019), river topology, and river obstructions data from the Global River Obstruction 
Database (Whittemore et al., 2020). Once FLPs have been computed by the Science Team, they will be attached 
to SWORD for the Agencies to use in producing discharge estimates. See Altenau et al. (2021) for further details.

3.2.  SWOT Observations: Spatial and Temporal Sampling Characteristics, and Precision

SWOT WSE, width, and slope resolution and precision are relevant to methods used to calculate discharge, and 
so are briefly reviewed here; for more details, see the SWOT River Single Pass Product Description Document 
(JPL Internal Document, 2020) example data products (https://podaac.jpl.nasa.gov/swot?tab=datasets), Science 
Requirements Document (JPL Internal Document, 2018) and Mission Performance and Error Budget (JPL Inter-
nal Document, 2017). SWOT WSE is measured interferometrically, and is defined relative to the Earth Gravi-
tational Model 2008 (EGM2008) geoid (Pavlis et al., 2012), where the geoid is the vertical distance above the 
World Geodetic System (WGS84) ellipsoid model of the Earth surface. SWOT width is computed as a reach 
average, by summing the inundated area of each SWOT radar pixel associated with a particular river reach and 
dividing by reach length (Frasson et al., 2017). Note that the SWOT mission has two phases, marked by different 
orbits and resulting spatiotemporal sampling. In the first phase (nominally 3 months long), SWOT measures a 
small subset of global rivers with daily sampling; this is the “fast repeat orbit.” In the second phase (nominally 
3 years long), all rivers are covered with less frequent temporal sampling; this is the “nominal science orbit.” Only 
spatial and temporal sampling for the nominal science orbit is described here. The SWOT mission goal for latency 
is 3 days: in other words, data will likely be available 3 days after each satellite pass (note that discharge products 
will not be available beginning approximately 1 year after launch: see Section 4.5 for details).

https://github.com/SWOTAlgorithms/RiverObs
https://podaac.jpl.nasa.gov/swot?tab=datasets
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3.2.1.  Spatial Characteristics

Figure 3a shows all rivers expected to be observed by SWOT based on SWORD (Altenau et al., 2021), broken out 
by width. The native resolution of the KaRIn radar on SWOT varies across the swath; the SWOT “pixel cloud” 
(from which SWOT river data products are computed) varies in resolution from 10 to 60 m in the cross-track 
direction and is posted every 20 m in the along-track direction. Many pixels are averaged together to compute 
river width, WSE, and slope (Frasson et al., 2017; JPL Internal Document, 2020). Some pixels measure both 
water and land, but because water is far brighter than land at SWOT incidence angles and at Ka-band, precise 
hydrologic information about relatively narrow rivers can be extracted from the SWOT measurements. The 
Science Requirements Document requires only that SWOT products be produced for rivers greater than 100 m, 
with a science goal of producing data products for all rivers wider than 50 m (JPL Internal Document, 2018). 
As shown by Pavelsky et al. (2014), SWOT spatial coverage assuming either 50 m or 100 m is far greater than 
current gage coverage. There are 213,485 SWORD river reaches, but many of these are too narrow, represent 
lakes or reservoirs that fall along rivers, are short reaches that span river obstructions, or are in areas of unreliable 
river topology; SWOT discharge will not be produced for such reaches. After filtering such reaches, a total of 
62,809 reaches are wider than 100 m, and a total of 122,684 reaches are wider than 50 m. SWOT discharge will be 

Figure 3.  (a) Surface Water and Ocean Topography (SWOT) mission river database (SWORD) river reaches shown by 
whether they meet the width cutoff for required discharge production (100 m). (b) Total number of SWOT passes per year 
observed on each reach, globally for all river reaches in SWORD, including the effects of ice cover reduction in SWOT 
passes. The inset shows the empirical cumulative distribution (CDF) and histogram (PDF) of annual number of SWOT 
passes.
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produced and is expected to be of good quality for all rivers greater than 100 m. The ability to produce discharge 
for rivers as narrow as 50 m will be explored by the SWOT Science Team during the mission.

3.2.2.  Temporal Characteristics

SWOT will measure most mid-latitude reaches twice on average during the 21 days repeat cycle of the science 
orbit (∼35 observations per year), with more observations at higher latitudes. Figure 3b shows the total number of 
expected observations per year, after including the effect of ice cover (SWOT discharge will not be estimated when 
rivers are ice covered). A total of 1,360 river that reaches wider than 100 m (2% of the total) are never observed due to 
small gaps in SWOT coverage. The effect of ice cover is seen in that the expected number of observations increases 
with latitude, but then begins to decrease at the highest latitudes; this effect is especially visible in Asia. Figure 4 
illustrates SWOT temporal sampling for four United States Geologic Survey gages in North America.

SWOT discharge is included in both the “single pass” data product, defined as the discharge observed at the time 
of each overpass, and a “cycle averaged” data product. Cycle averaged discharge will be computed as a simple 
average of all the single-pass discharge estimates for each cycle. For example, if there are three discharge esti-
mates in the 21-day cycle, the cycle-average is the simple mean of the three values.

3.2.3.  Measurement Precision

SWOT discharge accuracy is impacted by the SWOT WSE, width, and slope measurement accuracy. SWOT 
science requirements specify that WSE, width, and slope will be computed on all reaches with average width 
greater than 100 m to reach-scale accuracies of 10 cm, 15%, and 17 mm/km, respectively (JPL Internal Docu-
ment, 2018). Current estimates of these accuracies differ slightly from the requirements: for example, nominal 
width accuracy is expected to be on the order of 10 m (Frasson et al., 2017). It may seem surprising that SWOT 

Figure 4.  Illustration of Surface Water and Ocean Topography (SWOT) temporal sampling at four arbitrary gages (see panels 1–4) in the United States (see map for 
gage locations), adapted from Frasson (2021). The vertical lines indicate SWOT overpass timing, where each pass is represented by a different line style. The timing of 
each pass assumes an arbitrary mission start day of January 1 chosen for illustration purposes.
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can achieve such high precision for width, given that SWOT pixel spatial size varies from 10 to 60 m, in the 
cross-track direction (Fjørtoft et al., 2014). Note that many such pixels are averaged together to compute river 
width for a 10 km reach. Figure. 5 from Frasson et al. (2021), for example, shows width uncertainties for river 
nodes (spaced at 200 m downstream) from SWOT radar simulations. Averaging many pixels together leads to 
width errors on the order of 25 m at the node level. Averaging across ∼50 nodes at the reach level will further 
improve accuracy. Thus, reach-scale width errors are expected to be on the order of 10 m, due to averaging many 
radar pixels together. We consider 𝐴𝐴 𝐴𝐴′ to be measured, as it is more-or-less directly estimated from the SWOT 
measurements of WSE and width; uncertainty in 𝐴𝐴 𝐴𝐴′ can be approximated to be the product of WSE precision 

and the river width scaled by 𝐴𝐴
√

2 , as shown in Appendix A. The effects of WSE, width, and slope uncertainty on 
SWOT discharge uncertainty is described in Section 5.

3.3.  Additional Data Sets and the SWORD of Science

In addition to SWORD and SWOT data, other external data sets will also be leveraged to create SWOT data. 
Specifically, in situ discharge data and modeled discharge estimates will be used in various parts of the discharge 
creation process. The constrained branch of SWOT discharge will leverage gage data—both historical and concur-
rent with the SWOT mission; some of the concurrent gage data will be held out for discharge product validation. 
Details of these data sets are not provided here, but all available gage data will be leveraged.

A priori information for FLPE will be derived from historical global hydrological model simulations. Prior esti-
mates of flow statistics for the unconstrained branch will come from the WBM data set of Cohen et al. (2014). 
Note that this WBM simulation was not calibrated using gage discharge data and is thus philosophically consist-
ent with unconstrained branch. Prior estimates for the gage-constrained branch will come from GRADES, the 
Global Reach-Level A Priori Discharge Estimates for SWOT (Lin et al., 2019), a hydrologic model calibrated to 
in situ gages, and further bias-corrected by gages. Note that the gage constraints in GRADES are not the result of 
traditional model calibration, that is, GRADES did not use gage time series data to calibrate model parameters, 
but instead used only global runoff statistics regionalized from several thousand small and naturalized catchments 
using a neural network (Beck et al., 2015) to constrain the model, which was then run at 2.9 million locations. As 
a result, the gage constraints in GRADES should be considered indirect and limited, because the runoff percen-
tiles were regionalized from small catchments (10–10,000 km 2) that mostly fall below the SWOT observable river 
width limit (50–100 m). A number of additional data sets will be used as prior information in the FLPE process; 
these are collectively referred to as the “SWORD of Science” (SoS). The SoS combines all additional databases 
needed for FLPE; some additional details of such data sets are described below.

4.  How Will SWOT Discharge Be Produced?
SWOT discharge is created by a partnership between the Agencies and Science Team. “Confluence” is the 
Science Team computational framework for FLPE (Section 4.1), encoding flow laws (Section 4.2), and FLPE 
methods (Section 4.3). The Agencies produce discharge as part of SWOT data products (Section 4.4). We also 
present a timeline for SWOT discharge production (see Section 4.5), a plan for discharge evaluation (Section 4.6), 
and possible Science Team discharge estimates (Section 4.7).

4.1.  Confluence: A Computational Engine for SWOT Discharge and FLPE

The Confluence computational software engine (https://github.com/swot-confluence/) has been developed to enable 
FLPE in a timely manner from SWOT observations for multiple flow laws across global reaches. All Confluence code 
is currently publicly available, save for individual Mass-Conserved Flow Law Inversion (McFLI) algorithms which are 
maintained and made public by their original authors. To support the Agency discharge products, the Science Team 
will be required to produce FLP estimates rapidly at the global scale. This means we must ingest SWOT observations, 
reference many data fields within the SWORD database, and run computationally expensive discharge algorithms for 
on the order of 10 5 reaches, all on a short timeline. This is far from trivial, both in terms of logistics and in terms of the 
required computational resources. Confluence is a cloud-based computation engine that facilitates these operations; 
Confluence produces both discharge (to be available as a Science Team data product) and FLP estimates from multiple 
FLPE algorithms in parallel. Confluence is scalable on demand, both in terms of computational resources and storage 

https://github.com/swot-confluence/
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capacity: it is deployable on Amazon Web Services and similar cloud environments with massive computational 
resources, shortening needed computation time. Optimal FLP estimates produced by Confluence will be merged into 
SWORD and passed to the agencies to use with discharge production (i.e., step 2, in Figure 2). Confluence includes 
input modules to interface to all  three major data sets described in Section 3.3: SWOT, SWORD, and the SoS. The 
Confluence inputs and outputs are shown as a flowchart in Figure 5. The algorithms inside Confluence each calculate 
discharge as well as FLPs, but discharge values computed in Confluence are not passed to the Agencies, but are planned 
to be available to the community as so-called “Science Team discharge products” (Figure 5; Section 4.7). Confluence 
is running now on Amazon Web Service (AWS), and has been fully interfaced to read in SWOT data files, and produce 
the needed FLPs; example Confluence results are presented in Section 4.4. While we anticipate that algorithms will 
continue to evolve during the mission in order to refine future SWOT discharge, the results shown below demonstrate 
working software that is currently ready to process SWOT data as described in this paper. All Confluence processing 
code will eventually be made public. SWOT discharge products will be available approximately 1 year after launch.

4.2.  Flow Laws

Flow laws are the functional form that relate SWOT observations of WSE, width, and slope, and FLP estimates 
to river discharge: see Appendix A. The modified Manning's flow law shown in Equation 1 is presented as an 
example flow law. Equation 1 assumes that the nonlinear dynamics of open channel flow in natural rivers can be 
parameterized via the resistance coefficient (𝐴𝐴 𝐴𝐴 , sometimes referred to as the “friction coefficient,” or “Manning's 
n”) with different possible parameterization models, as described by Rodriguez et al. (2020), Larnier et al. (2020), 
or Bjerklie et al. (2005). As noted by Ferguson (2010), the resistance coefficient is rarely a constant with river 
stage. Thus, some flow laws specify 𝐴𝐴 𝐴𝐴𝑡𝑡 to vary as a function of WSE, while others specify it to vary as a function 
of 𝐴𝐴 𝐴𝐴′ , and still others specify it to be a constant. In all these options, these parameters are still functions of space, 
and therefore possibly different for each node or reach. We describe one example resistance parameterization, for 
illustration purposes. Following Rodriguez et al. (2020), the resistance coefficient 𝐴𝐴 𝐴𝐴𝑡𝑡 could take this form:

𝑛𝑛𝑡𝑡 = 𝑛𝑛𝑏𝑏

(

1 +
5

6

[

𝑊𝑊𝑡𝑡𝜎𝜎𝑧𝑧

𝐴̄𝐴 + 𝐴𝐴′
𝑡𝑡

]2
)

,� (2)

where 𝐴𝐴 𝐴𝐴𝑏𝑏 is the resistance coefficient at a high flow, such as bankfull, and 𝐴𝐴 𝐴𝐴𝑧𝑧 is the within-reach spatial variation 
of river bed elevation. As shown by Rodriguez et al. (2020), the terms in parentheses on the right-hand side of 
Equation 2 describe the effect of spatial variability within the reach, and 𝐴𝐴 𝐴𝐴𝑏𝑏 describes any and all forms of energy 
and momentum loss in the channel including irregular channel geometry, flow irregularities, bedload transport, 
turbulent lateral and vertical motion in the flow field, form drag around large obstacles (e.g., boulders and fallen 
trees on the channel bottom) as well as viscous friction losses (Gualtieri et al., 2018). Given this formulation for 

𝐴𝐴 𝐴𝐴𝑡𝑡 , in combination with Equation 1, 𝐴𝐴 𝐴̄𝐴 , 𝐴𝐴 𝐴𝐴𝑏𝑏 , and 𝐴𝐴 𝐴𝐴𝑧𝑧 denote time-invariant parameters that must be estimated for each 
reach, using methods described in the next section. While each algorithm will apply a slightly different version 
of both the flow law and the resistance coefficient formulation, Equations 1 and 2 are representative examples.

Figure 5.  Flow law parameter estimation (FLPE) flowchart, in the Confluence software environment. Many of the acronyms and terms are defined in the following 
subsections. The FLPE algorithms are labeled by whether they operate at the scale of reaches or river basins: see Section 4.3 for more details.
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Despite the simplicity of this flow law, it has proven remarkably resilient when applied to large rivers across 
a range of spatial scales, and including special cases such as multiple channels (Altenau et  al.,  2019), river 
reaches impacted by low-head dams (Tuozzolo, Langhorst, et al., 2019), and river floodplain interactions (Durand 
et al., 2014). Reaches with low river slopes (Durand et al., 2020) can be handled simply by relating WSE and 
river width to river discharge, that is, using a flow law that does not depend on river slope; the FLPs would still 
be estimated as described below.

4.3.  FLP Estimation Algorithms

As outlined in Section 2, FLPE is the first step of the two-step process to estimate river discharge using SWOT 
measurements (see Figure 2). The time-invariant parameters described earlier (𝐴𝐴 𝐴̄𝐴 , 𝐴𝐴 𝐴𝐴𝑏𝑏 , and 𝐴𝐴 𝐴𝐴𝑧𝑧 for Equations 1 and 2, 
as an example) must be estimated for each reach, globally, and for each flow law. Gleason and Durand (2020) 
describe several approaches to this problem. Here, we present an overview of FLPE methods planned for SWOT 
discharge (Figure 6). Here, we distinguish between FLPE algorithms that operate at the scale of river reaches 
(Sections 4.3.1 and 4.3.2) and those that operate at the scale of river basins (Section 4.3.3); these algorithms 
are listed in Table 1, and briefly described below. Note that a full description of these methods, including their 
needed inputs and prior information, is outside the scope of this manuscript; for more details on the reach-scale 
algorithms, see Frasson et al.  (2021). All of these algorithms described in this section will be run during the 
mission, using the Confluence software (Section 4.1).

4.3.1.  Reach-Scale Calibration Algorithms

The Modified Optimized Manning Method Algorithm (MOMMA) is a reach scale calibration algorithm and 
follows the same procedure as typical rating curve calibration (Turnipseed & Sauer, 2010). MOMMA estimates 
FLPs based on specifying a target discharge estimate. MOMMA is a revised version of the Mean Flow and 
Geomorphology algorithm (MFG) described by Bonnema et al. (2016) and Durand et al. (2016). MOMMA uses 
a slightly different version of the modified Manning's equation as Equation 1, and is based on the estimation of 
bankfull WSE based on analyzing the WSE-width relationship for each reach. MOMMA uses an estimate of 
bankfull discharge to calibrate the bankfull Manning flow resistance, which is then scaled as a function of relative 
depth in the channel (equations 1 and 15 in Bjerklie et al., 2018). Bankfull discharge measurements are derived 
from hydrological model output where in situ discharge is not available. Alternatively, the MOMMA FLPs can 
be estimated a priori from comparative or statistical information. The accuracy of SWOT discharge estimated 
via MOMMA is by construction limited to the accuracy of the data used to calibrate, which may include a range 
of discharge measurements made in the reach or an estimate of the mean discharge for the reach derived from 
another source.

4.3.2.  Reach-Scale Inverse Algorithms

Reach-scale inverse algorithms are designed for use in ungaged basins in areas where there is no in situ data to cali-
brate against, and where existing estimates of discharge may be poor. These algorithms solve a poorly constrained 
inverse problem; they incorporate existing estimates of discharge using Bayesian principles, modeling the uncertainty 
of SWOT observations, flow laws, and prior discharge as part of the inverse algorithm. Tuozzolo, Lind, et al. (2019) 
and Frasson et al. (2021) showed that such algorithms improve on prior discharge estimates, but that final discharge 
accuracy is nonetheless dependent to some extent on the prior. Indeed, Larnier et al. (2020) demonstrated that the 
inversion is ill-posed if based on the flow equations alone; prior information is necessary. Significant effort has been 
devoted to FLPE inverse algorithms in the SWOT context over the past decade or so (Durand et al., 2010, 2014, 2016; 
Garambois & Monnier,  2015; Gleason & Smith,  2014; Gleason et  al.,  2014; Hagemann et  al.,  2017; Larnier 
et al., 2020; Nickles et al., 2020; Oubanas et al., 2018; Tuozzolo, Langhorst, et al., 2019; Yoon et al., 2016). The key 
difference between these and the calibration approach described in the previous section is that these algorithms are 
designed to solve an under-constrained inverse problem, whereas the calibration approach is well-constrained.

The inverse algorithms described in this section are designed to run on one of two spatial domains: either a single 
reach, or a set of several reaches. The algorithms that run on a set of several reaches (called an “Inversion Set” here) 
estimate reach averaged discharge and FLPs for each reach in the Inversion Set, using only reach averaged SWOT 
observations. Inversion Sets are chosen to minimize lateral inflows, while including as many reaches as possible. 
Other algorithms operate on a spatial domain of a single reach and estimate discharge and FLPs at each node within 
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the reach using SWOT observations at the node scale. Output from inverse algorithms applied at the node scale is 
averaged to apply to reach scale quantities, in order to interface with the Agency reach-scale discharge estimates.

The algorithms often implicitly or explicitly invoke some form of the continuity equation applied to the spatial domain 
over which they are applied. They thus neglect tributary inflows and groundwater exchange, making the assumption 
that such lateral inflows lead to minimal discrepancy between upstream and downstream of the spatial domain. This 
assumption is obviously more secure when inverting over a single reach at the node scale, but with a tradeoff that 
SWOT observations are much more uncertain at the node scale than the reach scale: as there are ∼50 nodes per reach, 
node level errors will be on the order of seven times larger. In general continuity-related errors are expected to be 
minimal across sets of reaches when lateral inflows change the discharge by less than 5% (Nickles et al., 2020).

Figure 6.  Conceptual tree diagram showing the hierarchy of flow law parameter estimation (FLPE) algorithms that make 
up the first of the two-step process (see Section 2) to estimate Surface Water and Ocean Topography (SWOT) discharge. 
Circles with solid lines denote the classes of algorithms described in the manuscript, whereas circles with dashed lines denote 
individual FLPE algorithms. Reach-scale calibration algorithms, reach-scale inverse algorithms, and basin-scale algorithms 
are shown in blue, yellow, and red, and described in Sections 4.3.1, 4.3.2, and 4.3.3, respectively. Conceptual links in the 
tree diagram are shown with solid lines, whereas mechanical links are shown with dashed lines: output from the reach scale 
FLPEs (shown in yellow) is fed into the basin-scale FLPE (shown in red). All acronyms are defined in the text below or in the 
“Acronyms” at the end of the manuscript.



Water Resources Research

DURAND ET AL.

10.1029/2021WR031614

12 of 31

There are multiple classes of algorithms proposed to be used, including 
McFLI and variational data assimilation (VDA) as shown in Figure 6 and 
described in the next two subsections.

4.3.2.1.  Mass-Conserved Flow Law Inversion

McFLI refers to inverse algorithms that infer FLPs by equating discharge in 
neighboring adjacent reaches or nodes of the river, over a specified spatial 
domain (Gleason et  al.,  2017). McFLI algorithms thus invoke flow laws 
(Manning's equation or hydraulic geometry) and continuity (conservation 
of mass among neighboring nodes or reaches). Two McFLI algorithms are 
currently planned for use with SWOT.

The geomorphically informed Bayesian “At-many-stations” hydraulic 
geometry-Manning Algorithm (geoBAM; Brinkerhoff et al., 2020) leverages 
the concept of “At-many-stations” hydraulic geometry (AMHG; Gleason & 
Smith, 2014) to jointly invert Equation 1 and traditional hydraulic geometry 
as expressed by Brinkerhoff et  al.  (2019) following Dingman  (2007). This 
flow law has been simplified since geoBAM's original publication to remove 
redundant parameters and use only the primal terms of hydraulic geometry per 
Dingman (2007): bankfull width, bankfull depth, channel shape parameter r, and 
Manning's n. geoBAM builds from the original BAM algorithm of Hagemann 
et  al.  (2017) by introducing additional prior information. geoBAM assumes 
steady flow within each reach and is fully Bayesian: it models the uncertainty 
on each input including the observations and prior estimates of discharge and 
the FLPs to produce explicit posteriors on all terms in Equation 1. geoBAM first 
classifies rivers in SWORD according to their geomorphology, and then assigns 
priors according to geomorphology and discharge prior information.

The Metropolis-Manning (MetroMan) algorithm (Durand et  al.,  2014) is 
conceptually similar to geoBAM, and thus we highlight only the most impor-
tant differences. MetroMan uses only the Manning's equation flow law as 

written in Equation 1. MetroMan for SWOT will be applied to reaches, whereas geoBAM will be applied to 
nodes. MetroMan applies a continuity equation to adjacent reaches such that the difference in flow between 
adjacent reaches is equated to the change in storage within the reaches; thus, steady flow among reaches is 
not assumed as it is for geoBAM. The MetroMan mass balance equation will revert to steady flow when the 
time-resolution of SWOT is inadequate to resolve floodwave dynamics for a particular river. MetroMan will use 
a subset of the prior information used by geoBAM.

4.3.2.2.  Data Assimilation

Data assimilation (DA) approaches differ from McFLI in that they invoke a calibration process and/or a param-
eter identification process using a hydraulic model. The hydraulic model could be dynamic (e.g., the shallow 
water equations) or steady (e.g., the gradually varied flow equation), but in both cases the model requires river 
discharge and cross-section geometry as inputs, and computes WSE and river width as outputs. DA with hydrau-
lic models requires a prior estimate of FLPs (bathymetry, friction) and discharge, which are then optimized by 
minimizing the difference between the model outputs and the observations. For SWOT discharge, DA algorithms 
provide FLP values based on the assimilation output.

VDA algorithms in this context invoke a 1-D dynamic hydraulic model and its adjoint counterpart. They allow 
the assimilation of available SWOT observations within an assimilation window (i.e., a subset of the available 
observation times) through a forward and a backward run of the model at each minimization step. The observed 
hydraulic dynamics are propagated in both space and time. They provide an estimate of the model inputs/varia-
bles (posterior estimate) over the entire window (Oubanas et al., 2018).

Two VDA algorithms are under development for use with SWOT observations. The Hierarchical Variational 
Discharge Inference (HiVDI) algorithm is based on a hierarchical McFLI—VDA method; it is planned to run 
globally (Larnier et al., 2020). The McFLI-based modules in HiVDI enable the production of consistent prior 

Table 1 
List of the 14 Discharge Data Values to Be Produced for Each Surface 
Water and Ocean Topography (SWOT) Pass

Branch Prior discharge estimates FLPE algorithm Integrator

Unconstrained WBM BAM MOI

Unconstrained WBM HiVDI MOI

Unconstrained WBM MetroMan MOI

Unconstrained WBM MOMMA MOI

Unconstrained WBM SAD MOI

Unconstrained WBM SIC4DVar MOI

Unconstrained WBM Consensus –

Gage-constrained GRADES BAM MOI

Gage-constrained GRADES HiVDI MOI

Gage-constrained GRADES MetroMan MOI

Gage-constrained GRADES MOMMA MOI

Gage-constrained GRADES SAD MOI

Gage-constrained GRADES SIC4DVar MOI

Gage-constrained GRADES Consensus –

Note. The source of the prior on historical river discharge statistics is also 
provided; note that other a priori information required for each algorithm is 
not detailed here. FLPE is flow law parameter estimation. All acronyms are 
defined in the text or in the “Acronyms” at the end of the manuscript.



Water Resources Research

DURAND ET AL.

10.1029/2021WR031614

13 of 31

estimates, as well as final FLP and corresponding estimates. The VDA module, based on the Saint-Venant equa-
tions, estimates discharge in both space and time, along with the bathymetry and a time-varying friction coeffi-
cient. The VDA module takes node-scale inputs, and creates node-scale FLP outputs. The final reach-scale FLP 
estimates are computed from the node-scale results. This algorithm and the related DassFlow software are open 
source (http://www.math.univ-toulouse.fr/DassFlow/).

A simplified version of the SIC4Dvar algorithm described by Oubanas et al. (2018) will also be deployed at the 
global scale. In this version, a steady flow model will be configured and deployed for SWOT reaches instead of 
the full unsteady flow model. A Bayesian analysis is performed, weighing the prior information on average flow 
statistics with the likelihood function based on the difference between modeled and measured WSE, width, and 
slope. FLPs will then be estimated by minimizing the difference between the discharge outputs obtained from the 
Bayesian analysis and the modified Manning equation applied to the SWOT observations.

The SWOT Assimilated Discharge (SAD) algorithm (Andreadis et al., 2020) differs significantly from the VDA 
algorithms. SAD is best thought of as a batch ensemble Kalman smoother. An ensemble of FLPs at the node scale 
is created from prior information. The prior FLPs are used to create an ensemble of river discharge estimates, for 
each pass, assuming steady flow. Then the steady gradually varied flow equation is solved for the prior ensemble, 
predicting river WSE and width at each node for each member of the ensemble. The differences between SWOT 
measurements and prior predictions are used in the Kalman analysis to compute a posterior estimate of both 
discharge and FLPs.

4.3.3.  Basin-Scale Integrator Algorithms

The reach-scale algorithms (Sections 4.3.1 and 4.3.2) are designed to run on a limited spatial domain. Apply-
ing the inverse algorithms described above across an entire river network in a single computational analysis is 
currently computationally infeasible, necessitating that a large river network be handled either one reach at a 
time, or one Inversion Set at a time. Thus, a second class of algorithms is being developed that will “integrate” 
reach-scale algorithm results across river networks. Integrators will ensure that flow is conserved at river conflu-
ences. These algorithms are designed to run at basin scale, and to be used for both the gage-constrained and the 
unconstrained discharge estimates. In addition to leveraging flow conservation across river networks, integrators 
will combine reach-scale algorithm results with in situ data for the gage-constrained products.

The Mean Optimization Integrator (MOI, unpublished; see Section 5, e.g., results) is designed to run over a time 
series of SWOT observations once discharge has been computed. First, MOI estimates mean flow for each river 
in the network. This estimate can be computed mathematically as a linear problem by enforcing flow conservation 
at river junctions and throughout the river network and solving for the estimates of river discharge that are closest 
to the estimates derived from the inverse and calibration algorithms. For gage-constrained discharge, MOI will 
add in situ gages to the optimization objective function with a far lower uncertainty than specified for the FLPE 
estimates where gages are not available. This is a straightforward constrained optimization problem and can be 
solved with widely available computational solvers. Outliers from the reach-scale algorithms will be identified by 
running MOI iteratively. Second, MOI computes discharge uncertainty via an ensemble approach. An ensemble 
of mean flow is computed from reach-scale estimates of discharge uncertainty, and the optimization problem 
is solved for each ensemble member. The final uncertainty is computed from the standard deviation across the 
ensemble of optimal mean flow estimates. Third, the optimized mean flow estimates are used to infer optimal 
FLPs. Integrators would be applied to both the gage-constrained and unconstrained discharge estimates. MOI will 
account for inflow from rivers not observed by SWOT, channel withdrawals, and gain or loss of discharge from 
hyporheic exchange from globally available data sets by modifying the optimization constraints. For example, 
contribution of discharge  from rivers not observed by SWOT will be estimated from models used for global prior 
estimates of mean flow.

MOI will also be run across river networks that include storage features such as lakes and reservoirs. Invoking 
mass balance between the rivers and lakes, the difference between flow into and out of lakes is equal to the change 
in lake storage, and evaporation from the lake surface (assuming limited groundwater exchange). As suggested 
by Wang et al. (2021), Xin. (2022), and Riggs et al. (2022) SWOT measurements of lake volume variation can 
largely capture this discharge-storage interaction, and be used as another constraint on river discharge. Lake evap-
oration estimates derived following Zhao and Gao (2019) will thus be combined with SWOT lake storage change 
measurements to improve the estimates of FLPs.

http://www.math.univ-toulouse.fr/DassFlow/
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MOI constrains mean flow to be conserved across the SWOT-observed river network but does not enforce physical 
constraints on the time-varying SWOT discharge data. Although they were not in place before SWOT launch, future 
integrators could include global scale hydraulic models and DA such as the approach of Ishitsuka et al. (2021).

4.3.4.  FLPE for the Gage-Constrained Discharge Estimates

FLPE is performed similarly for the gage-constrained and unconstrained discharge estimates. For the reach-scale algo-
rithms, unconstrained FLPE uses priors from WBM, a model which was not calibrated to in situ gages. Gage-constrained 
FLPE uses priors from GRADES, which did use in situ gages; furthermore, gages are applied directly as priors for 
reach-scale algorithms, where available. For the basin-scale, no gages are used for MOI FLPE for the unconstrained 
products. For the gage-constrained products, MOI applies gaged mean flow directly to the analysis wherever gages are 
available. The constrained discharge will leverage both real-time and historical data. Historical gage data will be lever-
aged by creating relationships between satellite measurements from other remote platforms (e.g., river width derived 
from Landsat) and historical discharge data. This will allow discharge prediction concurrent with SWOT observations, 
which can then be used for both reach-scale and basin-scale FLPE for the gage-constrained product.

4.4.  Example Discharge Estimates and Data Products

Example FLP estimates are shown in Tables 2 and 3 and example Agency discharge estimates are shown in 
Figure 7. These estimates were produced by an end-to-end simulation, beginning with SWOT reach-scale meas-
urements of height, width, and slope, computing FLPs, and final SWOT discharge estimates, as they would be 
distributed by the space agencies. These estimates are informed by calibration to mean annual flow from hydro-
logic models, or constrained using gage information just as the will be during the mission. SWOT measurements 
were synthesized by mimicking SWOT space-time sampling and expected error distribution. The true height, 
width, and slope values were created using the Ohio River Community HEC-RAS Model (Adams et al., 2018). 
Model outputs were sampled at the times of SWOT orbits, errors were added to the data using the methods of 
Frasson et al. (2021), to create files that closely resemble the SWOT Level 2 single pass data format (JPL Internal 
Document, 2020). These synthesized data products were ingested into Confluence as shown in Figure 5. Tables 2 
and 3 show the reach-scale and basin-scale FLP estimates. The discharge values shown in Figure 7 are an almost 
exact replica of the software to be used by the agencies to create Agency discharge estimates (Coss et al., 2022).

Several important aspects of SWOT discharge are illustrated in these example discharge estimates. First, as 
described in Section 2, the science team will create FLP estimates and provide these to the space agencies: these 
FLP estimates are shown in Tables 2 and 3. The agencies will use these FLP estimates to create Agency SWOT 
discharge, shown in Figure  7. Second, SWOT discharge will contain both a gage-constrained and an uncon-
strained branch of FLP and discharge estimates, for example, Tables 2 and 3 represent the FLP estimates for the 
gage-constrained and unconstrained products, respectively. Third, for each branch, SWOT discharge will include 
a small ensemble of discharge estimates, computed using the various FLPEs described in the previous section. 
These are shown as separate time series in Figure 7, and separate sections of Tables 2 and 3. Fourth, the “consen-
sus” discharge will be computed in the second of the two-step process for computing river discharge, computed 
as an average across the ensemble of discharge estimates estimated from the six other algorithms, weighted by 
their respective uncertainties. Thus, the discharge data elements listed in Table 1 will be produced for each reach 
and each pass: seven for the unconstrained branch, and seven for the constrained branch.

4.5.  FLPE and Discharge Production Timeline

SWOT measurements of river WSE, width, and slope will be available during the mission, Agency-produced 
discharge will be available after the Science Team has computed FLP estimates and provided them to the space 
agencies, and will be available with the same latency as the rest of the level 2 data products such as river WSE, 
width, and slope. For optimal results, FLPE must be performed over periods with significant changes in river 
flows. As many seasonal rivers vary little in the dry season, the Science Team expects to deliver the first estimate 
of FLPs to the Agencies after performing FLPE analyses on approximately 1 year of data. The so-called “vali-
dation meeting” (a key mission landmark) is expected to take place 8 months after transitioning to the nominal 
science orbit (see Section 3.2). The SWOT Science Requirements Document specifies that Agency discharge 
estimates will begin to be produced not later than 6 months after the validation meeting; as launch took place in 
December 2022, Agency discharge estimates are planned to be available in August 2024. Note that other SWOT 
measurements, such as river WSE, width, and slope, are planned to be made public much earlier. Following the 
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initial release of the Agency discharge estimates, discharge estimates will be available in near-real time following 
each satellite overpass. It is our hope to update FLPs 1–2 times per month. As the length of time to perform FLPE 
grows with the mission lifetime, the FLPEs are expected to become more accurate and more precise; thus, FLPs 
for the Agency discharge product expected to be updated multiple times throughout the mission lifetime.

Table 2 
Example Flow Law Parameter Estimates for Seven Reaches on the Mississippi River for the Gage-Constrained Branch of the Surface Water and Ocean Topography 
(SWOT) Discharge Estimates

MetroMan

Reach-scale flow law parameters Basin-scale flow law parameters

Abar Ninf b Abar ninf b

Reach #

  74270100211 10,848.53 0.03 1.04 9,045.63 392.21 −4.76

  74270100221 10,548.05 0.03 1.50 10,556.17 37.07 −3.25

  74270100231 11,107.28 0.03 1.75 8,832.68 3,759.82 −5.48

  74270100191 11,073.69 0.03 0.92 11,112.76 0.43 −0.89

  74270100171 11,298.95 0.03 1.06 11,333.25 1.62 −1.54

  74270100151 9,027.99 0.03 0.64 9,043.53 0.070 0.14

  74270100131 11,305.57 0.03 1.61 10,434.40 3,741.31 −4.97

BAM Db n r A0 n –

Reach #

  74270100211 8.33 0.02 5.07 4,617.83 0.01 –

  74270100221 – – – 5,520.33 0.01 –

  74270100231 – – – 4,995.10 0.07 –

  74270100191 7.58 0.02 5.06 11,014.53 0.04 –

  74270100171 9.25 0.02 5.48 9,002.57 0.10 –

  74270100151 – – – 9,173.97 0.03 –

  74270100131 – – – 8,349.20 0.01

HiVDI Abar alpha beta Abar alpha beta

Reach #

  74270100211 2,774.84 85.35 −0.05 2,825.41 679.80 −0.84

  74270100221 4,199.46 47.46 −0.05 4,203.96 205.73 −0.38

  74270100231 2,916.82 85.03 −0.05 2,949.35 568.34 −0.79

  74270100191 754.88 56.04 −0.05 3,330.44 322.62 −1.29

  74270100171 1,627.21 69.67 −0.05 3,096.04 459.58 −1.14

  74270100151 5,426.60 35.97 −0.05 5,749.18 56.13 −0.62

  74270100131 1,800.34 91.61 −0.04 2,515.77 831.40 −1.35

MOMMA B H – B H –

Reach #

  74270100211 49.860 83.73 – 73 90.55 –

  74270100221 39.94 84.23 – 74.73 91.23 –

  74270100231 62.65 85.62 – 73.96 81.25 –

  74270100191 71.68 89.77 – 77.40 92.48 –

  74270100171 67.22 86.72 – 73.97 91.49 –

  74270100151 73.54 85.86 – 69.18 439,900.06 –

  74270100131 62.60 84.89 – 71.13 90.18 –
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4.6.  Discharge Evaluation

Both the gage-constrained and the unconstrained branches of the SWOT discharge estimates will be vali-
dated using in situ discharge data that was not used (and is completely independent of) data used to produce 
gage-constrained discharge. The purpose of evaluating or validating discharge is to produce reliable discharge 

Table 3 
As Table 2, Except for the Unconstrained Branch of Surface Water and Ocean Topography (SWOT) Discharge Estimates

MetroMan

Reach-scale flow law parameters Basin-scale flow law parameters

Abar ninf b Abar ninf b

Reach #

  74270100211 9,911.04 0.03 0.68 10,027.03 0.43 −1.26

  74270100221 9,331.77 0.03 0.59 9,462.11 0.13 −0.80

  74270100231 9,836.49 0.03 0.71 9,723.08 0.74 −1.45

  74270100191 10,195.97 0.03 0.53 10,152.67 0.01 1.07

  74270100171 10,480.92 0.03 0.61 10,499.63 0.02 0.35

  74270100151 9,415.54 0.04 0.37 9,345.89 0.01 1.25

  74270100131 10,460.51 0.03 0.81 10,435.34 0 1.50

BAM Db n r A0 n –

Reach #

  74270100211 8.04 0.02 4.68 2,737.13 0 –

  74270100221 7.45 0.02 5.72 3,056.28 0 –

  74270100231 5.61 0.02 3.77 2,229.71 0 –

  74270100191 7.06 0.02 5.26 3,310.92 0.01 –

  74270100171 6.40 0.02 5.61 3,082.77 0.01 –

  74270100151 – – – 3,190.92 0.02 –

  74270100131 – – – 2,476.79 0

HiVDI Abar alpha beta Abar alpha beta

Reach #

  74270100211 1,228.19 49.02 −0.05 2,742.23 234.04 −0.03

  74270100221 1,380.80 51.51 −0.050 3,065.90 289.13 0

  74270100231 5,372.95 21.78 −0.05 5,372.53 0.07 4.11

  74270100191 5,095.86 51.71 −0.05 4,818.42 30.48 0.15

  74270100171 485.28 62.22 −0.05 3,085.41 180.23 −0.36

  74270100151 3,890.62 35.59 −0.05 3,849.21 23.61 0.12

  74270100131 1,800.34 36.08 −0.05 2,578.97 298.13 −0.53

MOMMA B H – B H –

Reach #

  74270100211 72.25 85.61 – 75.94 85.33 –

  74270100221 36.32 86.73 – 76.24 91.23 –

  74270100231 68.10 85.90 – 75.34 91.79 –

  74270100191 71.68 89.77 – 78.67 81.78 –

  74270100171 67.22 86.72 – 75.65 89.49 –

  74270100151 73.54 85.86 – 76.77 156.37 –

  74270100131 61.74 85.58 – 73.55 88.18 –
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benchmark values that can be used to approximate global accuracy. We will use discharge data from all available 
sources to evaluate discharge accuracy, including gages maintained by global agencies, and streamflow measure-
ments available to the science team, including those measured by the SWOT calibration and validation team. We 
expect that discharge accuracy and uncertainty will vary among rivers, and we will stratify accuracy assessment 

Figure 7.  Example simulated Surface Water and Ocean Topography (SWOT) discharge (Q) results mimicking Agency-led data products for seven reaches on the 
Mississippi River. Branch (i.e., either gage-constrained or unconstrained) and SWOT mission river database (SWORD) reach IDs are shown in titles of each subplot. 
The various colored lines indicate each flow law parameter estimation algorithm, and are labeled in the figure legend. Note that some values exceed Y axis limit.
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across rivers by geomorphic class, river size, and other factors. Discharge evaluation is planned to be complete by 
the time the Agency product is publicly available.

It is important to note that gage and field discharge measurements are not perfect, even though they are the refer-
ence for evaluating SWOT discharge (Coxon et al., 2015; Kiang et al., 2018). Any difference between SWOT 
discharge and gage discharge necessarily reflects error in both SWOT discharge and in situ discharge.

Each gage will be assigned to be for either FLPE or validation; we will not split the record at each gage into cali-
bration versus validation but will instead assign the entire time-series record for each gage to either calibration or 
validation. The strategy to split in situ gage data into calibration/training and validation can be thought of as an 
experiment design problem. The purpose of the experiment design is twofold: First, we require characterization 
of the performance of all SWOT discharge products, to fulfill the science requirement that: “The SWOT discharge 
performance shall be quantified by a payload independent measurement or analysis during a post-launch valida-
tion period as well as during the mission lifetime.” (JPL Internal Document, 2018). Second, we seek to make the 
gage-constrained products as accurate as possible, using a subset of available in situ discharge data. Thus, we will 
split the data into calibration/training and validation sets, with the goal being to make the constrained products 
as accurate as possible, while saving enough data to fully evaluate SWOT discharge accuracy. In addition to 
gage data, the SWOT validation team will use ADCPs to collect in situ discharge measurements coincident with 
SWOT overpasses at select locations during the mission. We expect SWOT discharge accuracy for each reach 
to vary significantly in time, similar to how accuracy varies at a gage, and thus will break out SWOT discharge 
evaluation by flow regime.

4.7.  Discharge Estimates Beyond the Agency Products

The preceding sections have discussed only Agency discharge estimates that will be provided globally in fulfill-
ment of the SWOT Science Requirements document: that is, river discharge computed by the space Agencies 
using SWOT observations and FLPs computed by the Science Team. Agency discharge estimates will be available 
through Agency-funded data distribution centers, with full documentation compliance. However, SWOT meas-
urements of WSE, width, and slope enable a wide range of methods to estimate discharge. The Agency-produced 
discharge paradigm is somewhat restricting: it requires, for example, that discharge be computed using simple 
flow laws with parameters estimated offline. One possible example of a science team produced data product 
would be spatio-temporal interpolation of Agency-produced products (Paiva et al., 2015), or to assimilate the 
Agency products (Emery et al., 2020). These approaches (and the other options below) could move beyond the 
need to have a Manning-type formulation of discharge. A second possible product could assimilate the discharge 
estimates computed in the reach-scale algorithms into a global hydrological model (Ishitsuka et al., 2021). A 
third approach is to assimilate the SWOT observations of WSE, width, and slope directly into global hydraulic 
and hydrologic models (Andreadis et  al.,  2007; Biancamaria et  al.,  2011; Li et  al.,  2020; Wongchuig-Correa 
et al., 2020; Y. Yang et al., 2019). This approach would require global hydraulic models that adequately represent 
river hydraulic structures, waterfalls, and so on. Now that such data sets are beginning to be available globally, 
along with global simulations of river hydraulics (Getirana et al., 2017; Yamazaki et al., 2011) and noting the 
possibility that bathymetry could be refined in real-time by the assimilation (Yoon et al., 2012), such an approach 
appears increasingly feasible. A fourth possible product could use the Agency products as priors to estimate 
discharge and bathymetry at finer scales using hydraulic models and DA in order to account for dynamics over a 
larger area of the river and hence a denser spatial and temporal SWOT coverage (Oubanas et al., 2018). A fifth 
example could begin to work toward a constellation approach for surface water, similar to the Global Precipitation 
Mission (Huffman et al., 2020). SWOT measurements would be complemented by measurements of WSE from 
nadir altimeters, and measurements of river width from visible band imagery and radar. FLPE may rely on SWOT 
measurements, but once these parameters are estimated, they can be applied to any measurements of WSE and 
river width. A sixth option would be to reprocess the actual pixel cloud measurements to estimate WSE and river 
width in each channel in multi-channel river environments, to improve estimates of river discharge in braided and 
anastomosing rivers. Note that ∼10% of river reaches in SWORD are multi-channel rivers. A seventh option is 
to better estimate river discharge for low slope reaches by bringing more information related to tides in coastal 
environments. Ultimately, one advantage of Science Team data products is that they can be flexible based on the 
characteristics of the SWOT during the mission and the creativity of the research community. As such, we expect 
rapid innovations in these algorithms, some of which may ultimately be incorporated into later versions of the 



Water Resources Research

DURAND ET AL.

10.1029/2021WR031614

19 of 31

Agency-led discharge products. Science team-derived discharge data products will be made available publicly 
after the Science Team has produced and validated these products.

5.  Expected SWOT Discharge Accuracy
The previous section described how SWOT discharge is computed; this section describes how accurate SWOT is 
expected to be, which determines its potential scientific applications. Discharge accuracy is the degree to which 
discharge estimates conform to the true discharge values and is assessed by a range of accuracy measures based 
on the error at each time 𝐴𝐴 𝐴𝐴𝑡𝑡 :

𝑄̂𝑄𝑡𝑡 = 𝑄𝑄∗
𝑡𝑡 + 𝜀𝜀𝑡𝑡� (3)

where 𝐴𝐴 𝑄̂𝑄𝑡𝑡 is the SWOT discharge estimate, and 𝐴𝐴 𝐴𝐴∗
𝑡𝑡
 is the true discharge at SWOT overpass times for a given 

river reach. Note that 𝐴𝐴 𝐴𝐴∗
𝑡𝑡
 is unknown: the gaged discharge we will use for evaluating SWOT products has its 

own uncertainty. SWOT discharge errors will have both random and systematic components; for the purpose 
of this paper, we define systematic errors as those that would produce a discharge time-series bias, and random 
errors as those that would produce a zero mean 𝐴𝐴 𝐴𝐴𝑡𝑡 time series. Uncertainty of a discharge estimate “describes the 
expected magnitude of the error by characterizing the distribution of error that would be found if the [estimate] 
was infinitely repeated” (Povey & Grainger, 2015). As both systematic and random errors are important in this 
context, SWOT discharge will include measures of both random and systematic uncertainty, to be estimated using 
the process of Uncertainty Quantification (UQ) described by Smith (2013). Uncertainty estimates themselves 
are subject to evaluation through validation against in situ discharge data: after accounting for gage discharge 
uncertainties, inaccurate SWOT discharge uncertainty estimates will not correctly describe the magnitude of 
differences between gaged and SWOT discharge. Considering Equation 1, discharge uncertainty derives from 
FLPs, SWOT measurements, and the “approximation error” (as defined by Povey and Grainger (2015)) associ-
ated with the flow law itself.

Based on algorithm intercomparison studies (Durand et  al.,  2016; Frasson et  al.,  2021), SWOT discharge is 
expected to be dominated by systematic error, manifesting as time-series bias. Systematic errors as we define 
them arise predominantly because the FLP estimates are constant in time and used in Equation 1 for all discharge 
computations in a time series (Frasson et al., 2021). The result will be that all discharge estimates in the time 
series at that reach will be affected in the same way.

We define random and systematic measures of both accuracy and uncertainty. In evaluating the discharge prod-
ucts against field data, the expected magnitude of error 𝐴𝐴 𝐴𝐴𝑡𝑡 will be measured by the mean and standard deviation of 

𝐴𝐴 𝐴𝐴𝑡𝑡 , which we denote as 𝐴𝐴 𝐴𝐴∗
𝑄𝑄
 and 𝐴𝐴 𝐴𝐴∗

𝑄𝑄
 , respectively, where the * superscript indicates that these measures are assumed 

to characterize the actual error. The gage uncertainty must also be considered in interpreting values of 𝐴𝐴 𝐴𝐴∗
𝑄𝑄
 and 𝐴𝐴 𝐴𝐴∗

𝑄𝑄
 : 

though we refer to 𝐴𝐴 𝐴𝐴𝑡𝑡 as “error” for simplicity, in interpretation, we must treat 𝐴𝐴 𝐴𝐴𝑡𝑡 only as a difference between two 
uncertain estimates. A range of other accuracy measures will also be used: see Frasson et al. (2021). We propose 
two measures of uncertainty. The random part of the time-varying discharge time-series uncertainty 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ; we 
allow for 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to vary from pass to pass, and thus we expect uncertainty to capture any seasonal variations in 
SWOT discharge accuracy, as well as pass-to-pass variations in WSE, width, and slope measurement accuracy. 
The systematic part of the discharge time-series uncertainty will be defined as 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 ; it reflects the uncertainty in 
the time-series mean of the discharge at a reach. The sum of squared relative and systematic uncertainty is anal-
ogous to the relative RMSE metric defined by Bjerklie et al. (2005). The following sections describe how 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
and 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 are calculated from the three main sources of uncertainty for SWOT discharge: SWOT observation error, 
flow law approximation error, and FLP error.

5.1.  Uncertainty Due To SWOT Observation Error

SWOT observations contribute to the random part of SWOT discharge uncertainty. Discharge uncertainty due 
to SWOT observations can be represented via first-order Taylor series uncertainty propagation following Yoon 
et al. (2016). Normalized by discharge, 𝐴𝐴 𝐴𝐴𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂

𝑄𝑄−1 is the uncertainty in SWOT discharge due to observations, and 
be will be computed as:



Water Resources Research

DURAND ET AL.

10.1029/2021WR031614

20 of 31

(

𝜎𝜎𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂

𝑄𝑄

)2

=

(

5

3

𝜎𝜎𝐴𝐴′

𝐴̄𝐴 + 𝐴𝐴′

)2

+
(

2

3

𝜎𝜎𝑊𝑊

𝑊𝑊

)2

+
(

1

2

𝜎𝜎𝑆𝑆

𝑆𝑆

)2

� (4)

Uncertainty in the SWOT observations is denoted by “𝐴𝐴 𝐴𝐴 ” and will be available as part of the SWOT river single 
pass data product (JPL Internal Document, 2020); see Section 3.2.3 for more details.

5.2.  Uncertainty Due To Flow Law Approximation Error

Flow law approximation error contributes to the random part of SWOT discharge uncertainty. Using a single flow 
law to describe the full range of discharge in a river reach assumes that the energy loss at different flow levels can 
be captured by a continuous mathematical representation of the balance between the energy supplied (the slope) 
and the energy lost (flow resistance). In fact, the relation between energy gained and lost can be discontinuous 
and highly variable depending on the level of flow, the shape of the channel (in planform and in cross-section), 
sediment transport, and the non-uniform distribution of obstacles in the river. To first order, erosion within one 
part of a reach and deposition within another is not expected to lead to large errors. However, large flow events 
leading to significant erosion or deposition across the entire reach would change 𝐴𝐴 𝐴̄𝐴 and would add to uncertainty, 
but would be expected to happen infrequently within the SWOT mission lifetime.

Many estimates of Manning equation flow law accuracy are provided in the literature, but relatively few exist that 
meet the criteria that match how SWOT data will be used, using precise, time-varying estimates of river slope 
(Tuozzolo, Langhorst, et al., 2019). Moreover, most studies do not partition out the part of the validation accuracy 
due to observation uncertainty (in both discharge and river WSE, width and slope), and due to the flow law itself. 
Frasson et al. (2021) assessed flow law accuracy across a range of river reaches, and river flows, by comparing 
the simple flow law formulations described in Section 4.2 applied at the reach scale to hydraulic models that 
resolve the complete shallow water equations at the cross-section scale, and demonstrated typical flow law accu-
racy of approximately 5%, for a nominal case when flow is in-bank.

We would expect conditions such as out-of-bank flow to increase the flow law approximation error. Resistance 
changes dramatically for out-of-bank conditions, such as when flow occurs over vegetation. We note that error 
in FLP uncertainty tends to dominate over flow law approximation error, even for out-of-bank flow (Durand 
et al., 2016).

5.3.  Uncertainty Due To FLP Error

FLP error includes uncertainty due to 𝐴𝐴 𝐴̄𝐴 as well as the resistance coefficient 𝐴𝐴 𝐴𝐴 , and its associated parameters. 
As a tangible example to help visualize FLP error, consider the following thought experiment. Imagine that for 
a particular reach, McFLI is performed using an ensemble of prior estimates of mean annual flow, derived from 
different global hydrological models. Consider the posterior set of FLP estimates for each member of the ensem-
ble, along with the bias 𝐴𝐴 𝐴𝐴∗

𝑄𝑄
 of each ensemble member. The standard deviation across the ensemble of mean flow 

estimates is analogous to 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 . Note that 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 does not indicate the standard deviation of a time series, but rather is a 
measure of the expected dispersion of the mean flow for that reach due to FLP estimates. The key element of this 
definition of 𝐴𝐴 𝐴𝐴∗

𝑄𝑄
 is that it includes not just the uncertainty encapsulated in the posterior covariance of the handful 

of parameters given by a Bayesian McFLI algorithm, but also the uncertainty introduced by errors in the mean 
annual flow supplied to that McFLI algorithm. At the moment, McFLI algorithms do not account adequately for 
these error sources, but we want to leave the path open for this to be tackled in future work. The definition of 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 
will be re-evaluated during the mission, and will be replaced with the interquartile range or another statistic if it 
becomes evident that discharge uncertainty in mean flow is highly skewed.

Systematic error in discharge is mostly due to error in FLP estimates but relating 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 to parameter uncertainty is 
not trivial. For one thing, not all reach-scale algorithms produce explicit estimates of the parameter variances. 
Thus, in practice, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 values for each reach-scale algorithm will be specified based on algorithm intercomparison 
studies such as Durand et al. (2016) and more recently Frasson et al. (2021). Future work will explore mapping 
between parameters and systematic error. Basin-scale integrators will be applied to reach-scale output, and thus 

𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 estimates will be refined as a result, as shown in a simple example, in Section 5.5.
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5.4.  Combined Estimates of Random and Systematic Uncertainty

We here assume that SWOT observations and flow law approximation contribute only to random error, and that 
parameters contribute only to systematic error in discharge. This is not a perfect assumption in all cases: for 
example, error in parameter estimates contributes to distortion in the hydrograph, which could impact discharge 
standard error (Durand et al., 2010). Similarly, because Manning's equation is non-linear, random error in the 
observations may contribute a change in the mean of the discharge predictions. The assumptions we make here 
allow us to make a first-order estimate of SWOT discharge uncertainty.

The total random error component can be estimated from the component due to flow law approximation (𝐴𝐴 𝐴𝐴𝑄𝑄𝐹𝐹𝐹𝐹𝐹𝐹 ), 
and to observations (𝐴𝐴 𝐴𝐴𝑄𝑄𝑂𝑂𝑂𝑂𝑂𝑂 ):

(

𝜎𝜎𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑄𝑄
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=
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The total uncertainty 𝐴𝐴 𝐴𝐴𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 is analogous to a relative root mean square error (rRMSE as defined by Bjerklie 
et al. (2005)), and can be written as the combination of the mean and standard deviation, that is, the random and 
systematic terms:

(

𝜎𝜎𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡

𝑄𝑄

)2

=

(

𝜎𝜎𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑄𝑄

)2

+

(

𝑠𝑠𝑏𝑏𝑄𝑄

𝑄𝑄

)2

� (6)

The next step is to relate 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 and 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 to the three primary sources of discharge error: FLP error, error in SWOT 

observations, and flow law approximation. In the following sections, we model these quantities and describe the 
current best estimates of their magnitudes, to better visualize SWOT discharge uncertainty.

5.5.  Example Estimates of Uncertainty in SWOT Discharge

We apply the MOI integrator described in Section 4.3.3 to enforce conservation among reaches and incorporate gage 
discharge where available, to reduce systematic discharge uncertainty. These are presented as sample results only: 
they will be updated using real SWOT data during the mission. Here, we are leveraging the fact that inverse algorithm 
results have generally been found to have uncorrelated errors from one river reach to another (Durand et al., 2016; 
Frasson et al., 2021). In reality, some degree of correlation is to be expected; we here conservatively assume a correla-
tion coefficient of 0.7 among reaches. This conservatism also compensates for the fact that such features as diversions 
and hyporheic exchange are not otherwise accounted for in the integrator accuracy estimation. We applied MOI over 
the SWOT river network over the study area shown in Figure 8a, which amounts to all rivers which have mouths along 
the Alaska coastline. We chose this domain for two reasons: first, it includes both a large river (the Yukon) and many 
smaller rivers (e.g., the rivers north of the Yukon basin); we hypothesize that the integrators will reduce uncertainty for 
large rivers more so than small rivers, for both gage-constrained and unconstrained discharge. Second, this domain is 
a good example of an area with some gages (as shown in Figure 8a), but not the high density of gages in, for example, 
western Europe or CONUS, which is generally unrepresentative of the rest of the world.

To apply the integrator, we must specify values of uncertainty associated with SWOT observations, FLPs, and 
flow law approximation. Here we assume SWOT observation uncertainty as described in Section  3.2.3. We 
assume 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄𝑄𝑄

−1 of 40%, which seems achievable for ungaged areas based on our reach-level experiments to date 
(Frasson et al., 2021). We assume 𝐴𝐴 𝐴𝐴𝑄𝑄𝐹𝐹𝐹𝐹𝐹𝐹𝑄𝑄

−1 of 5%. We note that gage measurements of river discharge have their 
own uncertainty (Kiang et al., 2018), and assume that mean annual flow computed from gages has an uncertainty 
of 5%; if actual discharge uncertainties are larger, constrained discharge uncertainty will be greater than that 
shown below.

5.5.1.  Random Discharge Uncertainty

Figures  8b–8d show the discharge uncertainty due to WSE, slope, and width uncertainty, respectively, and 
Figures 8e and 8f show the combined random discharge uncertainty. Figures 7b–7d show that observation errors 
generally lead to larger relative discharge uncertainty for smaller rivers; this is especially clear for WSE and width. 
Uncertainty for WSE and width remain below 0.15 (15%) throughout most of the domain and decrease with river 
width. Uncertainty for river slope differs, in that as rivers become flatter downstream, relative discharge error due 
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to slope increases (compare Equation 4). The areas where no data are shown on the river network in Figure 8c 
are where a “low slope” algorithm will be used. For these reaches, we assume a rating curve form of the flow 
law and thus only keep the discharge uncertainty due to 𝐴𝐴 𝐴𝐴′ ; however, we assume that 𝐴𝐴 𝐴𝐴𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑄𝑄

−1 is twice as large 
(0.1), as we are using only 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴 to approximate discharge, and thus ignoring changes in slope. Figure 7e for the 
total random uncertainty shows that random uncertainty no longer decreases for the largest rivers, because these 
large rivers are flat, and are expected to have larger flow law approximation error. The CDFs in Figure 8f show 
how these terms interact. Slope is the smallest factor in overall discharge uncertainty, for most (80%) of reaches. 
For the flatter reaches, slope tends to dominate, and is the only one of the three individual observation terms to 

Figure 8.  Study area and random error estimates. (a) River width and streamflow gages from the United States Geologic 
Survey (USGS) and the Water Survey of Canada (WSC) used to create the constrained discharge estimate and shaded relief. 
Relative random discharge errors (𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑄𝑄−1 ) errors due to (b) water surface elevation (WSE) (c) slope, and (d) width. (e) 
Total random discharge errors due to observations and flow law approximation error. (f) Cumulative distribution functions 
(CDFs) of random discharge error components and total. Axes (b)–(e) have nearly identical spatial extent to (a) and are 
unlabeled for simplicity.
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show a long tail. Indeed, the discharge uncertainties for 𝐴𝐴 𝐴𝐴′ and width are approximately linear in their CDFs, 
despite the underlying width data following the usual long-tail exponential distribution over the domain (Frasson 
et al., 2019). Combining the observation and flow law approximation error leads to the estimate of total random 
error 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑄𝑄

−1 , which has a minimum value of 0.05, due to the minimum value of flow law approximation error 
assumed for all reaches. For approximately a third of reaches in the domain, 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑄𝑄

−1 is dominated by 𝐴𝐴 𝐴𝐴′ , as 
indicated by the linear shape of the CDF up to the 0.3 quantile. Between 0.3 and 0.8, 𝐴𝐴 𝐴𝐴′ width and slope all play an 
important role in determining the final uncertainty. Above 0.8, slope dominates the reaches with highest random 
error are dominated by slope. Considering the total random error, the 67th percentile is 0.12, and the vast majority 
(>95%) of reaches have random error less than 0.15.

5.5.2.  Systematic Discharge Uncertainty

Figure 9 shows the values of 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 over the study domain. Figure 9a shows the unconstrained case: along the main-
stem rivers, uncertainty predicted by MOI is 0.3, or a little lower, whereas on the smaller rivers upstream, uncer-
tainty is closer to the assumed value of 0.4. Figure 9b shows the constrained case: note near gages, uncertainty 
reaches 0.05, matching the assumed value noted above. Figure 9c shows the comparison of the 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 cdf for the 
Yukon River for the constrained and unconstrained cases. The effect of the gages is very stark: many reaches are 
either unconnected to rivers with gages or are located so far from the gage that the impact is relatively minimal; 
future work will present methods to compute the distance along river networks at which gage impact is minimal. 
Nonetheless, a little over half of the reaches in the Yukon basin benefit from the gages. Figure 9d shows the 
impact of gages on rivers north of the Yukon basin. Gages show a similar impact in this region: for both cases, the 
67th percentile of 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 is unchanged due to gages, whereas the median is reduced from 0.3 to 0.2, a 50% reduction.

Figure 9.  Systematic uncertainty, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 , over Alaska. Maps showing spatial variations in 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 for the (a) unconstrained (b) 
constrained discharge estimates. The difference between unconstrained (blue) and constrained (red) values of 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 for the (c) 
rivers north of the Yukon basin and (d) Yukon River basin. CDF, cumulative distribution function.
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5.5.3.  Combined Discharge Uncertainty

Figure 10 shows the total uncertainty, combining both the 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 and 𝐴𝐴 𝐴𝐴𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑄𝑄
−1 . Figures 10a and 10b show the stark 

contrast that adding gages has on the 𝐴𝐴 𝐴𝐴𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑄𝑄
−1 discharge uncertainty: reaches with gages, and located further 

downstream generally have lower uncertainty for the constrained product. The uncertainty CDF for the uncon-
strained products (Figure 10c) shows that the systematic error due to parameters 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 dominates the total uncer-
tainty in essentially all cases. This is still true most of the time for the gage-constrained case (Figure  10d): 

𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 > 𝜎𝜎𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for 90% of the reaches in the domain.

This exercise to examine SWOT discharge uncertainty has illustrated three things. First, uncertainty is dominated 
by bias or systematic error. Second, the inclusion of gages means that the gage-constrained products will be able 
to provide nearly unbiased discharge for reaches that have gages or are located near gages. Third, the random error 
in SWOT discharge should be less than 15%; that is, time variations in discharge should be known within 15%, 
for the vast majority of reaches.

5.6.  Comparing SWOT and Gage Discharge Uncertainty

We generally expect SWOT discharge accuracy to be somewhat lower than what is achieved from in situ 
measurements. We would not expect a gaged discharge time series to exhibit systematic bias that will likely 
be present with SWOT discharge estimates. On the other hand, gage discharge estimates have non-trivial 

Figure 10.  Maps of total uncertainty (𝐴𝐴 𝐴𝐴𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑄𝑄
−1 ), over Alaska for the (a) unconstrained (b) gage-constrained discharge 

estimates. Cumulative distribution functions (CDFs) of random (blue), systematic (red), and total uncertainty (gold) for the 
(c) unconstrained and (d) unconstrained discharge estimates.
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uncertainty as well. In their review, McMillan et al.  (2012) present uncertainties from discharge predicted 
by a rating curve of at least 10%, with significantly higher uncertainty cited for special cases such as low 
flows, out-of-bank flows. Unsteady flow and complex geomorphology have also been found to lead to higher 
gaged uncertainties (Cheng et al., 2019). These values are consistent with other more recent studies (Coxon 
et al., 2015; Kiang et al., 2018; Sorengard & Di Baldassarre, 2017). Nonetheless, as noted above, systematic 
bias estimates of around 30% for 𝐴𝐴 𝐴𝐴𝑏𝑏𝑄𝑄 (see Section 5.5.2) are significantly larger than those reported for gaged 
discharge in the literature. SWOT measurements of discharge time variations ∼15% are expected to be some-
what greater than gaged discharge accuracy. Given the lack of gaged discharge in most parts of the world, a 
synergistic use of SWOT discharge, gaged discharge, and hydrologic models, with appropriate consideration 
of their respective uncertainties, seems the optimal way to advance our understanding of global hydrologic 
processes.

6.  Conclusion
SWOT river discharge estimates will provide global discharge data for rivers wider than 100 m, including the 
world's largest ungaged basins. These discharge data have the potential to spark a revolution in global hydrologic 
science if their space-time sampling and uncertainty characteristics are accepted by the global community. SWOT 
discharge estimates will be created using relatively simple flow laws that combine SWOT measurements of WSE, 
width and slope, and FLP estimates. The observations will lead to approximate random uncertainty in SWOT 
discharge, on the order of 15%. Uncertainty in the FLPs will lead to systematic error that will express itself as 
bias in river discharge time series and will vary widely. For the “gage-constrained” branch of SWOT discharge 
estimates, mean flow is expected to be estimated within 20% for reaches that are near gages. Based on example 
results presented for Alaskan rivers, for the “unconstrained” branch of SWOT discharge, mean flow is expected 
to be within 30%. Results in other basins are expected to vary somewhat.

SWOT discharge estimates have the potential to lead to transformative new hydrologic science. Our study indi-
cates that the combined random and systematic uncertainty for single pass discharge estimates can be as low or 
lower than 35% for most reaches, even when no gage data are used to constrain the SWOT discharge estimates. 
While calibrated hydrologic models can easily achieve this accuracy, in basins where no calibration data are 
available, this will be a significant improvement on global uncalibrated models (Emery et al., 2018). The tempo-
ral variations or anomaly in SWOT discharge will be estimated far more accurately than the total discharge with 
a random uncertainty of <15% for most reaches, as we have shown, although the sparse sampling means that 
hydrographs may not be fully resolved (Sikder et al., 2021), especially for smaller and flashier rivers. The ability 
to accurately estimate streamflow variations implies that SWOT will provide accurate measurements of what 
amounts to the event flow hydrographs for all of the world's ungaged basins. Though available only for large 
rivers, and at temporal sampling on the order of 10 days on average, this will provide an important new resource 
for understanding global hydrological processes.

Appendix A:  Derivation of Modified Manning's Equation
The typical form of Manning's equation, for example, as presented by Sturm (2010) (see his equation. 4.9) is 
given by

𝑉𝑉 =
1

𝑛𝑛
𝑅𝑅2∕3𝑆𝑆1∕2� (A1)

where 𝐴𝐴 𝐴𝐴 is the coefficient representing the resistance of the river bank, 𝐴𝐴 𝐴𝐴  is the cross-sectional average velocity, 
𝐴𝐴 𝐴𝐴 is the river slope, and 𝐴𝐴 𝐴𝐴 is the hydraulic radius, which is equal to the cross-sectional area divided by the wetted 

perimeter. The “river slope” is discussed in depth below. This equation was independently developed by multiple 
investigators.

Multiplying the cross-sectional area by the cross-sectional velocity yields the river discharge:

𝑄𝑄 = 𝐴𝐴𝐴𝐴 =
1

𝑛𝑛
𝐴𝐴5∕3𝑃𝑃 −2∕3𝑆𝑆1∕2� (A2)
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In rivers of the size that SWOT will see, the so-called “wide river” approximation yields very little error, typically 
<1% (Strelkoff & Clemmens, 2000). This allows substitution of river width (𝐴𝐴 𝐴𝐴  ) for the wetted perimeter, which 
yields:

𝑄𝑄 =
1

𝑛𝑛
𝐴𝐴5∕3𝑊𝑊 −2∕3𝑆𝑆1∕2� (A3)

A1.  Estimating River Cross-Sectional Area With SWOT

SWOT will measure the river width, river slope, and river WSE (𝐴𝐴 𝐴𝐴 ), which form the basis of approximation of 
the cross-sectional area. Combining SWOT measurements of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  allow measurements of the temporal 
changes in river cross-sectional area. Figure  A1 shows a graphical representation of a time series of SWOT 
measurements. Visually, each successive SWOT measurement maps out a part of the cross-sectional shape. First, 
consider an example: visually from Figure  A1, the change in cross-sectional area between, for example, the 
top two observations can be estimated using a trapezoidal shape, as described by Frasson (2021) and Durand 
et al. (2014). Extending this notion, the cross-sectional area above the lowest SWOT measurement can be esti-
mated as a sum of the trapezoids from the lowest SWOT measurement to the desired time.

The previous paragraph illustrated the idea of approximating cross-sectional area using a time series of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  . 
For SWOT applications, we take this idea one step further, defining an approach that is more robust to observa-
tion uncertainty. To calculate 𝐴𝐴 𝐴𝐴 , we first define 𝐴𝐴 𝐴𝐴0 , the cross-sectional area below the lowest SWOT measure-
ment. Consider a time series of SWOT observations of 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡 , where the “𝐴𝐴 𝐴𝐴  ” subscripts indicate that a 
quantity changes in time; an example time series is illustrated as a scatterplot of these two quantities in Figure A2. 
Next, define

𝐴𝐴𝑡𝑡 = 𝐴𝐴0 + 𝛿𝛿𝛿𝛿𝑡𝑡� (A4)

where 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 is the change in cross-sectional area between the overpass at time 𝐴𝐴 𝐴𝐴  and the lowest SWOT observation. 
Then 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 can be computed by a simple integral over the height-width data, as described in Durand et al. (2014). 
Here, we note that 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 can also be defined as an integral over a functional form that describes the response 
of 𝐴𝐴 𝐴𝐴  to 𝐴𝐴 𝐴𝐴 . To accommodate the noisy observations, we first fit a three-part piecewise-linear function to the 

𝐴𝐴 𝐴𝐴𝑡𝑡,𝑊𝑊𝑡𝑡 data (see Figure A2) and refer to this form as 𝐴𝐴 𝐴𝐴 = 𝑓𝑓 (𝐻𝐻) . Note that nonlinear forms could also be used 
to represent the response of width to changes in WSE; we have chosen a linear form here for simplicity. Then as 
shown by Durand et al. (2014),

𝛿𝛿𝛿𝛿𝑡𝑡 = ∫
𝐻𝐻𝑡𝑡

𝐻𝐻0

𝑓𝑓 (𝐻𝐻)𝑑𝑑𝑑𝑑� (A5)

where 𝐴𝐴 𝐴𝐴0 is the WSE of the lowest flow observed by SWOT.

The final step in obtaining the form used by SWOT is motivated by having a cross-sectional area time series with 
zero median. Thus, we define the median cross-sectional area as the unknown, relating it to 𝐴𝐴 𝐴𝐴0 . First define 𝐴𝐴 𝐴𝐴′ , 
the median-zero estimate of the cross-sectional area anomaly. Then 𝐴𝐴 𝐴𝐴′

𝑡𝑡
 can be calculated from 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 via:

Figure A1.  A notional river cross-section is shown, along with a notional time series of Surface Water and Ocean 
Topography (SWOT) measurements indicated by the dashed blue lines. Visually, each SWOT observation measures both 
the river water surface elevation (𝐴𝐴 𝐴𝐴 ) and river width (𝐴𝐴 𝐴𝐴  ). The time series of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  can be used to approximate the 
cross-sectional area time series.
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𝐴𝐴′
𝑡𝑡 = 𝛿𝛿𝛿𝛿𝑡𝑡 − 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (A6)

where 𝐴𝐴 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the median of the 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 time series. This leads to the final approximation of cross-sectional area:

𝐴𝐴𝑡𝑡 = 𝐴𝐴′
𝑡𝑡 + 𝐴̄𝐴� (A7)

Thus, we have approximated the cross-sectional area at any time based on the median cross-sectional area 𝐴𝐴 𝐴̄𝐴 and 
the time-series anomaly 𝐴𝐴 𝐴𝐴′

𝑡𝑡
 , and 𝐴𝐴 𝐴̄𝐴 is the unobserved flow law parameter to be estimated using methods described 

in Section 4.3. Substituting Equation A7 into Equation A3 yields Equation 1, the modified Manning equation 
discussed in the manuscript.

We treat 𝐴𝐴 𝐴𝐴′
𝑡𝑡
 as being measured, because it is estimated in a direct way from basic SWOT measurements 𝐴𝐴 𝐴𝐴𝑡𝑡,𝑊𝑊𝑡𝑡 . 

The measurement uncertainty of 𝐴𝐴 𝐴𝐴′
𝑡𝑡
 can be computed from simpler estimate of cross-sectional area change:

𝐴̂𝐴′
𝑡𝑡
=
(

𝐻𝐻𝑡𝑡 −𝐻𝐻

)

(

𝑊𝑊𝑡𝑡 +𝑊𝑊

2

)

� (A8)

where 𝐴𝐴 𝐻𝐻𝐻𝑊𝑊  are the height and width measurements at the median WSE, and 𝐴𝐴 𝐴̂𝐴′
𝑡𝑡
 has the same basic definition as 

𝐴𝐴 𝐴𝐴′
𝑡𝑡
 , but is estimated in a different way. Indeed, 𝐴𝐴 𝐴̂𝐴′

𝑡𝑡
 would be expected to be less precise than 𝐴𝐴 𝐴𝐴′

𝑡𝑡
 , since it is computed 

using only two observations. Thus, a conservative estimate of the uncertainty of 𝐴𝐴 𝐴𝐴′
𝑡𝑡
 can be computed based on 

Equation A8:

𝜎𝜎𝐴𝐴′ = 𝜎𝜎𝐻𝐻𝑊𝑊𝑡𝑡

√

2� (A9)

A2.  Using River Surface Slope in Manning's Equation for SWOT Discharge

Manning's equation, as given in Equation A1, usually is recommended only to apply in contexts where the slope 
of the river bed is equal to the slope of the river surface (often referred to as “uniform flow”). More generally, the 
modified Manning's equation assumes that the so-called friction slope or rate of momentum loss downstream is 
equal to the slope of the water surface. It does not assume that the bed slope and surface slope are identical, and 
thus it does not assume uniform flow (Tuozzolo, Langhorst, et al., 2019). The surface slope represents the sum 
of two forces acting on the water: the downward pull of gravity, and the spatial gradient in hydrostatic forces, 
represented as downstream changes in river depth. Thus, Equation  1 corresponds exactly to the steady state 
equilibrium of the “diffusion wave” approximation (Trigg et al., 2009). Garambois and Monnier (2015) provide 
an objective basis for the modified Manning's equation by showing that it results from neglecting the acceleration 
terms in the shallow water equations with the assumption that Froude numbers are low (i.e., <0.3). Garambois 

Figure A2.  Simulated Surface Water and Ocean Topography (SWOT) measurements of water surface elevation (WSE) and 
river width, from a reach on the Ohio River (blue points). The three line segments represent a piecewise linear function that 
represents the relationship between WSE and width.
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and Monnier (2015) suggested that the modified Manning's equation is thus a “low Froude approximation”. Most 
rivers that SWOT can measure will have Froude <0.3, most of the time: for example, see Bjerklie et al. (2020), 
which makes this approximation reasonable. However, even if Froude numbers are significantly higher than 0.3, 
the modified Manning equation can be expected to function adequately in most cases as it has several degrees 
of freedom with which to fit the data. In other words, Fr < 0.3 is a sufficient condition to justify the modified 
manning formulation, but it is not necessary. Nonetheless, care must be taken not to apply the modified Manning's 
equation in parts of the river such as riffles or low-head dams where there is a significant elevation drop across 
a very short distance where flow is expected to be supercritical. This is handled for SWOT discharge by using a 
database of such structures within SWORD to define reach boundaries that exclude such structures. The length 
of river that includes the hydraulic structure is defined as a “dam reach” (Altenau et al., 2021), a special class 
of reach for which WSE, width, slope, and discharge are not computed. Similarly, lakes on SWOT rivers are 
expected to have a surface slope too low to resolve; discharge is not computed for lakes (Altenau et al., 2021).

Acronyms
CDF	 cumulative distribution function
FLP	 flow law parameter
FLPE	 flow law parameter estimation
geoBAM	 Geomorphically informed Bayesian At many stations hydraulic geometry- Manning Algorithm
GRADES	 Global Reach-Level A Priori Discharge Estimates for SWOT
McFLI	 Mass Conserved Flow Law Inversion
MOI	 Mean Optimization Integrator
SoS	 SWORD of Science
SWORD	 SWOT mission river database
SWOT	 Surface Water and Ocean Topography
USGS	 United States Geological Survey
WBM	 Water Balance Model
WSC	 Water Survey of Canada
WSE	 water surface elevation

Data Availability Statement
The data chain used for the confluence run example (Section 4.4) is available on Zenodo (https://doi.org/10.5281/
zenodo.7392075).
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